Презентація на тему «Степенные функции»


215



Слайд #1


Степенные функции
Подготовили
Презентація на тему «Степенные функции» - Слайд #1

Слайд #2


Эпиграфом нашего урока являются слова А. Эйнштейна:
“Весь наш предшествующий опыт приводит к убеждению,что природа является осуществлением того,что математически проще всего представить”.
Презентація на тему «Степенные функции» - Слайд #2

Слайд #3


План:
1.Введение (определение)1.1 Область определения1.2 Рациональный показатель степени1.3 Свойства2 Комплексная функцияЛитератураПримечания
Презентація на тему «Степенные функции» - Слайд #3

Слайд #4


Нам знакомы функции
у = х
х
у
у = х2
х
у
у = х3
х
у
х
у
Прямая
Парабола
Кубическая
парабола
Гипербола
Презентація на тему «Степенные функции» - Слайд #4

Слайд #5


Степенными функциями называются функции вида у = хr, где r – заданное рациональное число
Введение
Презентація на тему «Степенные функции» - Слайд #5

Слайд #6


1.1. Область определения
Если показатель степени — целое число, то можно рассматривать степенную функцию на всей числовой прямой (кроме, возможно, нуля). В общем случае степенная функция определена при x > 0. Если a > 0, то функция определена также и при x = 0, иначе нуль является её особой точкой.
Презентація на тему «Степенные функции» - Слайд #6

Слайд #7


1.2. Рациональный показатель степени
Графики степенной функции при натуральном показателе n называются параболами порядка n. При a = 1 получается функция y = kx, называемая прямой пропорциональной зависимостью.
Графики функций вида y = x − n, где n — натуральное число, называются гиперболами порядка n. При a = − 1 получается функция , называемая обратной пропорциональной зависимостью.
Если , то функция есть арифметический корень степени n.
Пример: из третьего закона Кеплера вытекает, что период T обращения планеты вокруг Солнца связан с большой полуосью A её орбиты соотношением: T = kA3 / 2 (полукубическая парабола).
Гиперболы порядка n:
n = − 1
n = − 2
n = − 3
Параболы порядка n:
n = 0
n = 1
n = 2
n = 3
n = 4
Гиперболы порядка n:
n = − 1
n = − 2
n = − 3
Презентація на тему «Степенные функции» - Слайд #7

Слайд #8


1.3. Свойства
Функция непрерывна и неограниченно дифференцируема всюду, где она определена.
В интервале , функция монотонно возрастает при a > 0 и монотонно убывает при a < 0. Значения функции в этом интервале положительны.
Производная функции:
Презентація на тему «Степенные функции» - Слайд #8

Слайд #9


Алгоритм решенияРассмотрим степенные функции с натуральным показателем а, принадлежащим ко множеству всех натуральных чисел. Если а≠0, то в степень а можно возвести любое действительное число. Поэтому областью определения функции у =xа является множество всех действительных чисел. С некоторыми такими степенными функциями с натуральным показателем мы уже знакомы.
Презентація на тему «Степенные функции» - Слайд #9

Слайд #10


Если а=0, то степень х0 определена для любого числа х≠0.
При этом х0=1 функция у=х0 определена на множестве Х=(-∞; 0) и (0;∞) и её графиком является параллельная оси Ох прямая у=1 с одной «выколотой» точкой (0;1).
Презентація на тему «Степенные функции» - Слайд #10

Слайд #11


Если а=1, то получим функцию у = х, её графиком является прямая.
Презентація на тему «Степенные функции» - Слайд #11

Слайд #12


y
x
-1 0 1 2
у = х2
у = х6
у = х4
Показатель r = 2n – чётное натуральное число
Презентація на тему «Степенные функции» - Слайд #12

Слайд #13


Показатель r = 2n – чётное натуральное число
х
у
у = х2, у = х4 , у = х6, у = х8, …
у = х2n
Функция у=х2n чётная,
т.к. (–х)2n = х2n
Функция убывает на
промежутке
Функция возрастает
на промежутке
График чётной функции
симметричен относительно
оси Оу.
Презентація на тему «Степенные функции» - Слайд #13

Слайд #14


y
x
-1 0 1 2
у = х3
у = х7
у = х5
Показатель r = 2n-1 нечётное натуральное число
Презентація на тему «Степенные функции» - Слайд #14

Слайд #15


Показатель r = 2n-1 – нечётное натуральное число
х
у
у = х3, у = х5, у = х7, у = х9, …
у = х2n-1
Функция у=х2n-1 нечётная,
т.к. (–х)2n-1 = – х2n-1
Функция возрастает на промежутке
График нечётной функции симметричен относительно начала координат – точки О.
Презентація на тему «Степенные функции» - Слайд #15

Слайд #16


y
x
-1 0 1 2
у = х-1
у = х-3
у = х-5
Показатель r - целое отрицательное нечётное число
Презентація на тему «Степенные функции» - Слайд #16

Слайд #17


Функция убывает
на промежутке
Показатель r = – (2n-1), где n – натуральное число
1
х
у
у = х-3, у = х-5 , у = х-7, у = х-9, …
Функция у=х-(2n-1) нечётная,
т.к. (–х)–(2n-1) = –х–(2n-1)
Функция убывает на
промежутке
Презентація на тему «Степенные функции» - Слайд #17

Слайд #18


y
x
-1 0 1 2
у = х-4
у = х-2
у = х-6
Показатель r –целое отрицательное
чётное число
Презентація на тему «Степенные функции» - Слайд #18

Слайд #19


Показатель r = – 2n, где n – натуральное число
1
х
у
у = х-2, у = х-4 , у = х-6, у = х-8, …
Функция у=х2n чётная,
т.к. (–х)-2n = х-2n
Функция возрастает на
промежутке
Функция убывает
на промежутке
Презентація на тему «Степенные функции» - Слайд #19

Слайд #20


y
x
-1 0 1 2
у = х0,5
у = х0,84
у = х0,7
Показатель r – положительное дробное число, 0 < r < 1
Презентація на тему «Степенные функции» - Слайд #20

Слайд #21


Показатель r – положительное дробное число, 0 < r < 1
1
х
у
у = х0,3, у = х0,7, у = х0,12, …
Функция возрастает на
промежутке
Презентація на тему «Степенные функции» - Слайд #21

Слайд #22


y
x
-1 0 1 2
у = х1,5
у = х2,5
у = х3,1
Показатель r – положительное дробное число, r >1
Функция возрастает на
промежутке
Презентація на тему «Степенные функции» - Слайд #22

Слайд #23


y
x
-1 0 1 2
у = х-1,3
у = х-0,3
у = х-2,3
у = х-3,8
Показатель r – отрицательное
дробное число, r < 0
Презентація на тему «Степенные функции» - Слайд #23

Слайд #24


Показатель r – отрицательное дробное число
1
х
у
у = х-1,3, у = х-0,7, у = х-2,12, …
Функция убывает на
промежутке
Презентація на тему «Степенные функции» - Слайд #24

Слайд #25


Примеры решения степенных функций
Функция
График функции- кубическая парабола.
1) Д(f)=R;
2) E(f)=R;
3) Нули функции: x=0
4) Знакопостоянство
, если x (0;+ ),
, если x (- ;0)
5) монотонность:
Функция возрастает, если x R
6)Начало отсчета- центр симметрии
Презентація на тему «Степенные функции» - Слайд #25

Слайд #26


Число a- отвечает за перемещение вдоль оси ОХ;
если а 0,
то влево на а единиц от 0;
если а 0,
то вправо на а единиц от 0.
Число b-отвечает за перемещение вдоль оси OY;
если b 0,
то вверх на b единиц от 0 ;
если b 0,
то вниз на b единиц от 0.
Презентація на тему «Степенные функции» - Слайд #26

Слайд #27


График функции- гипербола.
1) Д(y)=R, кроме х=0
2) E(y)=R, кроме y=0
3) Нули функции: нет
4) Знакопостоянство:
, если ,
, если
5) монотонность:
Функция убывает на всей области определения
6)Начало отсчета- центр симметрии.
Презентація на тему «Степенные функции» - Слайд #27

Слайд #28


Число а- отвечает за перемещение вдоль оси OX;
если ,
то влево на a единиц от 0;
если ,
то вправо на а единиц от 0.
Число b- отвечает за перемещение вдоль оси OY;
если ,
то вверх на b единиц от 0;
если ,
то вниз на b единиц от 0.
Презентація на тему «Степенные функции» - Слайд #28

Слайд #29


Функция
1) Д(y)=
2)E(y)=
3) Нули функции x=0
4) Знакопостоянство: ,
если
5) монотонность:
Функция возрастает,
если
Презентація на тему «Степенные функции» - Слайд #29

Слайд #30


Сегодня на уроке
мы расширили знания
о степенных функциях, их свойствах и графиках
Презентація на тему «Степенные функции» - Слайд #30