Презентація на тему «Размещение. Перестановка. Комбинации»


567



Слайд #1


Размещение
Перестановка
Комбинации
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #1

Слайд #2


Размещения, перестановки, сочетания
Пусть у нас есть множество из трех {a,b,c} элементов . Какими способами мы можем выбрать из этих элементов два?
 ab, ac, bc, ba, ca, cb .
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #2

Слайд #3


Определение. Размещениями множества из   различных элементов по m элементов 
(m ≤ n ) называются комбинации, которые составлены из данных n элементов по m элементов и отличаются либо самими элементами, либо порядком элементов.
Число всех размещений множества из n элементов по m элементов обозначается через Anm  ,
где n =1,2,…  и m=1, n.
Размещение
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #3

Слайд #4


Теорема. Число размещений множества из   элементов по   элементов равно
Anm =n(n-1)…(n-m+1)
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #4

Слайд #5


Доказательство. Пусть у нас есть элементы
a1, a2 ,…,a n . Пусть a i 1 , a i 2 ,…,a im  — возможные размещения. Будем строить эти размещения последовательно. Сначала определим a 1 — первый элемент размещения. Из данной совокупности n элементов его можно выбрать n различными способами. После выбора первого элемента a i1 для второго элемента a i 2 остается n - 1 способов выбора и т.д. Так как каждый такой выбор дает новое размещение, то все эти выборы можно свободно комбинировать между собой. Поэтому имеем:
Anm = n (n – 1 )…….(n - m+1)
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #5

Слайд #6


Пример. Сколькими способами можно составить флаг, состоящий из трех горизонтальных полос различных цветов, если имеется материал пяти цветов?
Решение. Искомое число трехполосных флагов:
A35 = 5*4*3=60
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #6

Слайд #7


Перестановка
Определение. Перестановкой множества из n элементов называется расположение элементов в определенном порядке.
Так, все различные перестановки множества из трех элементов {a, b, c} — это
abc, acb, bac, bca, cab,cba
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #7

Слайд #8


Очевидно, перестановки можно считать частным случаем размещений при m= n.
Число всех перестановок из n элементов обозначается Pn . Следовательно, число всех различных перестановок вычисляется по формуле
Pn = n(n-1)……2*1=n!
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #8

Слайд #9


Пример. Сколькими способами можно расставить 8 ладей на шахматной доске так, чтобы они не били друг друга?
Решение. Искомое число расстановки 8 ладей
P8 = 8!=40320
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #9

Слайд #10


0!=1 по определению
Презентація на тему «Размещение. Перестановка. Комбинации» - Слайд #10