- Головна
- Готові шкільні презентації
- Презентація на тему «Плазма та її властивості. Практичне застосування плазми»
Презентація на тему «Плазма та її властивості. Практичне застосування плазми»
295
Слайд #1
Плазма та її властивості. Практичне застосування плазми.
Виконувала:учениця 11-б класу НВК” школа – ліцей ” оріяна ”
Українець Марія
Виконувала:учениця 11-б класу НВК” школа – ліцей ” оріяна ”
Українець Марія
Слайд #2
Плазма та її властивості. Практичне застосування плазми.
Виконувала:учениця 11-б класу НВК” школа – ліцей ” оріяна ”
Українець Марія
Виконувала:учениця 11-б класу НВК” школа – ліцей ” оріяна ”
Українець Марія
Слайд #3
Плазма - це частково чи повністю іонізований газ, в якому густини позитивних і негативних зарядів майже збігаються. Плазма вважається четвертим станом речовини.
У повністю іонізованій плазмі електрично нейтральних атомів немає, тому плазма дуже добре проводить струм. У цілому плазма являє собою електрично нейтральну систему.
Поряд з нагріванням іонізація газу і утворення плазми можуть бути викликані різними способами, наприклад, бомбардуванням атомів газу швидкими зарядженими частинками. При цьому утворюється низькотемпературна плазма.
У повністю іонізованій плазмі електрично нейтральних атомів немає, тому плазма дуже добре проводить струм. У цілому плазма являє собою електрично нейтральну систему.
Поряд з нагріванням іонізація газу і утворення плазми можуть бути викликані різними способами, наприклад, бомбардуванням атомів газу швидкими зарядженими частинками. При цьому утворюється низькотемпературна плазма.
Слайд #4
Через велику рухливість заряджених частинок у плазмі, вони легко переміщуються під дією електричного і магнітного полів, тому будь-які локальні порушення електронейтральності плазми швидко ліквідуються.
На відміну від нейтрального газу, між молекулами якого є короткодіючі сили, між зарядженими частинками плазми діють кулонівські сили, які порівняно повільно зменшуються з відстанню. Кожна частинка взаємодіє одночасно з багатьма навколишніми частинками.
На відміну від нейтрального газу, між молекулами якого є короткодіючі сили, між зарядженими частинками плазми діють кулонівські сили, які порівняно повільно зменшуються з відстанню. Кожна частинка взаємодіє одночасно з багатьма навколишніми частинками.
Слайд #5
Завдяки цьому частинки можуть брати участь не тільки в хаотичному тепловому русі, а і в упорядкованих (колективних) рухах. У плазмі легко збуджуються різні коливання й хвилі.
Провідність плазми підвищується зі зростанням ступеня іонізації. За високої температури повністю іонізована плазма за своєю провідністю наближається до надпровідників
Провідність плазми підвищується зі зростанням ступеня іонізації. За високої температури повністю іонізована плазма за своєю провідністю наближається до надпровідників
Слайд #6
Більшість речовини у Всесвіті перебу-ває у стані плазми. Перш за все у плазмовому стані перебуває речовина Сонця та інших зірок. Це високотемпературна плазма, що нагрівається термоядерними реакціями всередині світил. Плазмою є також зоряний вітер, зокрема сонячний вітер — потік іонізованої речовини із зірок.
Слайд #7
Більшість речовини у Всесвіті перебу-ває у стані плазми. Перш за все у плазмовому стані перебуває речовина Сонця та інших зірок. Це високотемпературна плазма, що нагрівається термоядерними реакціями всередині світил. Плазмою є також зоряний вітер, зокрема сонячний вітер — потік іонізованої речовини із зірок.
Слайд #8
Більшість речовини у Всесвіті перебу-ває у стані плазми. Перш за все у плазмовому стані перебуває речовина Сонця та інших зірок. Це високотемпературна плазма, що нагрівається термоядерними реакціями всередині світил. Плазмою є також зоряний вітер, зокрема сонячний вітер — потік іонізованої речовини із зірок.
Слайд #9
Блискавка є прикладом природної плазми. Зазвичай, струм у блискавці досягає 30,000 ампер, а потенціал - до 100 мільйонів вольт. Блискавки випромінюють світло, радіохвилі, рентгенівські та гама-промені.[1] Температура плазми у блискавці може досягати ~28,000 Кельвінів і густина електронів може перевищувати 1024 м−3.
Слайд #10
В земних умовах у стані плазми перебуває речовина іоносфери, завдяки плазмі спостерігається північне сяйво, плазма існує в блискавках, у вогнях святого Ельма. Полум'я теж здебільшого іонізує речовину, утворюючи плазму.
Вільні електрони в металах, які рухаються між додатньо зарядженими іонними остовами, теж можна вважати плазмою — їхня поведінка в зовнішніх електричних і електромагнітних полях аналогічна поведінці плазми.
Вільні електрони в металах, які рухаються між додатньо зарядженими іонними остовами, теж можна вважати плазмою — їхня поведінка в зовнішніх електричних і електромагнітних полях аналогічна поведінці плазми.
Слайд #11
Плазма у термоядерному реакторі
Слайд #12
Плазмова лампа.
Слайд #13
В зв'язку з перспективним використанням плазми в ядерному синтезі важливе значення має проблема її утримання в обмеженому об'ємі за допомогою зовнішнього магнітного поля.
Плазму застосовують також у термоелектронних і магнетоплазмодинамічних (МПД) генераторах — перетворювачах тепла безпосередньо на електричну енергію (минаючи перетворення в механічну).
Плазму застосовують також у термоелектронних і магнетоплазмодинамічних (МПД) генераторах — перетворювачах тепла безпосередньо на електричну енергію (минаючи перетворення в механічну).
Слайд #14
В зв'язку з перспективним використанням плазми в ядерному синтезі важливе значення має проблема її утримання в обмеженому об'ємі за допомогою зовнішнього магнітного поля.
Плазму застосовують також у термоелектронних і магнетоплазмодинамічних (МПД) генераторах — перетворювачах тепла безпосередньо на електричну енергію (минаючи перетворення в механічну).
Плазму застосовують також у термоелектронних і магнетоплазмодинамічних (МПД) генераторах — перетворювачах тепла безпосередньо на електричну енергію (минаючи перетворення в механічну).
Слайд #15
Дякую за Увагу!!!