- Головна
- Готові шкільні презентації
- Презентація на тему «Еволюція всесвіту» (варіант 4)
Презентація на тему «Еволюція всесвіту» (варіант 4)
218
Слайд #1
Эволюция Вселенной
Презентация ученицы лицея при ТПУ Бардамовой Марины
Руководитель: учитель физики лицея при ТПУ Козлова Г.М.
Томск 2012
Презентация ученицы лицея при ТПУ Бардамовой Марины
Руководитель: учитель физики лицея при ТПУ Козлова Г.М.
Томск 2012
Слайд #2
Оглавление
Актуальность работы
Цель и задачи работы
Ранние представления о Вселенной
Вселенная в мифологии
Современные космологические представления
Теория Большого Взрыва
Формирование космических тел
Звездная эволюция
Галактики
Теории будущего галактики
Источники
Следующий слайд
Предыдущий слайд
Оглавление
Актуальность работы
Цель и задачи работы
Ранние представления о Вселенной
Вселенная в мифологии
Современные космологические представления
Теория Большого Взрыва
Формирование космических тел
Звездная эволюция
Галактики
Теории будущего галактики
Источники
Следующий слайд
Предыдущий слайд
Оглавление
Слайд #3
Актуальность работы
Но для того, чтобы прогнозировать смерть Вселенной, нужно понять, как она возникла, как развивалась и в каком состоянии находится в настоящий момент. Именно этим вопросам посвящена представленная работа.
Последнее время мы часто слышим о грядущем «Конце света»: то прогнозируют резкое глобальное потепление, то предупреждают о гигантском метеорите, падающем на землю, то ссылаются на предсказания древних. Но все эти идеи связаны с исключительными случаями. А что если Вселенной отведен некий определенный срок существования? Что если гибель её – процесс необратимый?
Но для того, чтобы прогнозировать смерть Вселенной, нужно понять, как она возникла, как развивалась и в каком состоянии находится в настоящий момент. Именно этим вопросам посвящена представленная работа.
Последнее время мы часто слышим о грядущем «Конце света»: то прогнозируют резкое глобальное потепление, то предупреждают о гигантском метеорите, падающем на землю, то ссылаются на предсказания древних. Но все эти идеи связаны с исключительными случаями. А что если Вселенной отведен некий определенный срок существования? Что если гибель её – процесс необратимый?
Слайд #4
Цель и задачи работы
Цель
Создать электронное учебное пособие о космологических представлениях эволюции Вселенной.
Задачи
Рассмотреть исторические теории о возникновении мира
Исследовать содержание теории Большого взрыва
Изучить формирование космических тел
Цель
Создать электронное учебное пособие о космологических представлениях эволюции Вселенной.
Задачи
Рассмотреть исторические теории о возникновении мира
Исследовать содержание теории Большого взрыва
Изучить формирование космических тел
Слайд #5
Ранние представления
Человека всегда волновал вопрос – как возникла Вселенная. Но для того, чтобы искать ответ на него, нужно было узнать, что вообще представляет собой окружающий мир.
Человека всегда волновал вопрос – как возникла Вселенная. Но для того, чтобы искать ответ на него, нужно было узнать, что вообще представляет собой окружающий мир.
Слайд #6
Зооморфная модель Вселенной
Одна из самых удивительных моделей космоса - это Земля, подпирающаяся тремя слонами, стоящими на черепахе, которая в свою очередь покоится на трех китах. Согласно ученым, эта легенда зародилась, по всей вероятности, в Индии и оттуда проникла на Запад.
По разным источникам, число слонов колеблется от трех до семи, а вместо китов может выступать гигантский змей. Также у некоторых народов черепаха является последним звеном опоры.
Одна из самых удивительных моделей космоса - это Земля, подпирающаяся тремя слонами, стоящими на черепахе, которая в свою очередь покоится на трех китах. Согласно ученым, эта легенда зародилась, по всей вероятности, в Индии и оттуда проникла на Запад.
По разным источникам, число слонов колеблется от трех до семи, а вместо китов может выступать гигантский змей. Также у некоторых народов черепаха является последним звеном опоры.
Слайд #7
Зооморфная модель Вселенной
Другим могучим животным, игравшим роль опоры мироздания, был бык, издавна символизировавший неукротимую мощь и служивший помощником человеку в тяжелой работе.
Бык как символ опоры мира распространен в легендах народов Азии. По одному из вариантов этого поверья, один рог быка уже сломался под тяжестью вселенной, когда же сломается и второй, наступит конец мира.
Еще шире распространены легенды, по которым опора мироздания представлялась в облике одной или нескольких гигантских рыб, плавающих в мировых водах.
Другим могучим животным, игравшим роль опоры мироздания, был бык, издавна символизировавший неукротимую мощь и служивший помощником человеку в тяжелой работе.
Бык как символ опоры мира распространен в легендах народов Азии. По одному из вариантов этого поверья, один рог быка уже сломался под тяжестью вселенной, когда же сломается и второй, наступит конец мира.
Еще шире распространены легенды, по которым опора мироздания представлялась в облике одной или нескольких гигантских рыб, плавающих в мировых водах.
Слайд #8
Вселенная в мифологии
Люди древности, не имеющие космических кораблей и телескопов, могли лишь догадываться о строении Вселенной. Но постепенно мир из плоского и безграничного становился шарообразным и замкнутым, затем люди поняли, что мир – это не только Земля, но и звезды, другие планеты.
Люди древности, не имеющие космических кораблей и телескопов, могли лишь догадываться о строении Вселенной. Но постепенно мир из плоского и безграничного становился шарообразным и замкнутым, затем люди поняли, что мир – это не только Земля, но и звезды, другие планеты.
Слайд #9
Космогоническая мифология
«Вначале существовал лишь вечный, безграничный, темный Хаос. В нем заключался источник жизни мира. Все возникло из безграничного Хаоса - весь мир и бессмертные боги.» - греческая мифология
«Повсюду простирались безбрежные воды — «великое озеро». Окаменевшие, холодные воды, казалось, навечно застыли в неподвижности. Не было ни воздуха, ни тепла, ни света: всюду царил мрак - первозданный Хаос, и ничто не нарушало покоя. Долго, очень долго ничего не менялось в мире. Но вот однажды заколыхались древние воды, заплескались, и на поверхности их появился великий бог Атум-Ра.» - египетская мифология
Атум-Ра,
бог первотворения
«Вначале существовал лишь вечный, безграничный, темный Хаос. В нем заключался источник жизни мира. Все возникло из безграничного Хаоса - весь мир и бессмертные боги.» - греческая мифология
«Повсюду простирались безбрежные воды — «великое озеро». Окаменевшие, холодные воды, казалось, навечно застыли в неподвижности. Не было ни воздуха, ни тепла, ни света: всюду царил мрак - первозданный Хаос, и ничто не нарушало покоя. Долго, очень долго ничего не менялось в мире. Но вот однажды заколыхались древние воды, заплескались, и на поверхности их появился великий бог Атум-Ра.» - египетская мифология
Атум-Ра,
бог первотворения
Слайд #10
Космогоническая мифология
Сначала не существовало ничего: ни звезд, ни луны, ни даже солнца. Существовали лишь воды, простиравшиеся без конца и края. Из тьмы первородного хаоса, прибывавшего без движения, как в глубоком сне, прежде иных творений возникли воды. Затем из воды родился огонь. Золотое Яйцо было образовано огромной всемогущей силой тепла. Из зародыша Золотого Яйца появился Прародитель Брахма.» – индийская мифология
Брахма,
бог творения
Сначала не существовало ничего: ни звезд, ни луны, ни даже солнца. Существовали лишь воды, простиравшиеся без конца и края. Из тьмы первородного хаоса, прибывавшего без движения, как в глубоком сне, прежде иных творений возникли воды. Затем из воды родился огонь. Золотое Яйцо было образовано огромной всемогущей силой тепла. Из зародыша Золотого Яйца появился Прародитель Брахма.» – индийская мифология
Брахма,
бог творения
Слайд #11
Космогоническая мифология
Тем самым, мы видим, что легенды сходятся в одном: источником всего был хаос, пространство «без ничего»; позже появлялись две стихии – вода и огонь, которые и пробуждали жизнь во Вселенной.
«Прежде установления точного времясчисления, когда земля еще была не устроена, всюду царствовал хаос. Земля и вода, свет и тьма, звезды и небесная твердь представляли из себя одну дымящуюся, пенящуюся, не имеющую определенной формы массу. Все было безобразно, все было перемешано, и не существовало ни одного живого создания.» - японская мифология
Тем самым, мы видим, что легенды сходятся в одном: источником всего был хаос, пространство «без ничего»; позже появлялись две стихии – вода и огонь, которые и пробуждали жизнь во Вселенной.
«Прежде установления точного времясчисления, когда земля еще была не устроена, всюду царствовал хаос. Земля и вода, свет и тьма, звезды и небесная твердь представляли из себя одну дымящуюся, пенящуюся, не имеющую определенной формы массу. Все было безобразно, все было перемешано, и не существовало ни одного живого создания.» - японская мифология
Слайд #12
Космогоническая мифология
Центральной догмой творения в христианстве является «сотворение из ничего» Создателем, вызвавшим всё сущее из состояния небытия в состояние бытия. Бог при этом выступает и первичной причиной существования мира.
В книге Бытия говорится, что на первый день Бог создал свет и отделил его от тьмы; на второй день — создал твердь и воду, на третий — сушу и растения, на четвёртый — небесные светила, на пятый — птиц, рыб и пресмыкающихся, наконец, на шестой — животных и человека.
Сотворение мира, Кафедральный собор Монреале, Италия, мозаика XII в.
Ян Брейгель Младший, «Бог создаёт Солнце, Луну и звёзды»
Центральной догмой творения в христианстве является «сотворение из ничего» Создателем, вызвавшим всё сущее из состояния небытия в состояние бытия. Бог при этом выступает и первичной причиной существования мира.
В книге Бытия говорится, что на первый день Бог создал свет и отделил его от тьмы; на второй день — создал твердь и воду, на третий — сушу и растения, на четвёртый — небесные светила, на пятый — птиц, рыб и пресмыкающихся, наконец, на шестой — животных и человека.
Сотворение мира, Кафедральный собор Монреале, Италия, мозаика XII в.
Ян Брейгель Младший, «Бог создаёт Солнце, Луну и звёзды»
Слайд #13
Современные космологические представления
В настоящее время люди значительно продвинулись в изучении Вселенной по сравнению со своими предками. Но даже сейчас ученые не могут воссоздать весь процесс возникновения Вселенной полностью.
В настоящее время люди значительно продвинулись в изучении Вселенной по сравнению со своими предками. Но даже сейчас ученые не могут воссоздать весь процесс возникновения Вселенной полностью.
Слайд #14
Законы теоретической физики
Данные наблюдательной астрономии
Разбегание галактик лежит в основе расширения Вселенной
Данные наблюдательной астрономии
Разбегание галактик лежит в основе расширения Вселенной
Слайд #15
Закон разбегания Хаббла
«Закон разбегания», сформулированный в 1929 году Хабблом:
«Закон разбегания», сформулированный в 1929 году Хабблом:
Слайд #16
Горячая Вселенная
Модель «горячей Вселенной» - космологическая модель, в которой эволюция Вселенной начинается с состояния плотной горячей плазмы, состоящей из элементарных частиц, и протекает при дальнейшем адиабатическом космологическом расширении.
Впервые модель горячей вселенной рассматривалась в 1947 году Г.А. Гамовым. Наиболее существенное наблюдательное предсказание, вытекающее из модели горячей Вселенной — наличие реликтового излучения со спектром, очень близким к спектру абсолютно чёрного тела, возникшего в момент рекомбинации ионов (в основном, протонов) и электронов в нейтральные атомы.
Модель «горячей Вселенной» - космологическая модель, в которой эволюция Вселенной начинается с состояния плотной горячей плазмы, состоящей из элементарных частиц, и протекает при дальнейшем адиабатическом космологическом расширении.
Впервые модель горячей вселенной рассматривалась в 1947 году Г.А. Гамовым. Наиболее существенное наблюдательное предсказание, вытекающее из модели горячей Вселенной — наличие реликтового излучения со спектром, очень близким к спектру абсолютно чёрного тела, возникшего в момент рекомбинации ионов (в основном, протонов) и электронов в нейтральные атомы.
Слайд #17
Горячая Вселенная
Модель горячей Вселенной получила эмпирическое подтверждение в 1965 году в открытии реликтового излучения американскими учеными Пензиасом и Уилсоном.
Реликтовое излучение - одна из составляющих общего фона космического электромагнитного излучения. Реликтовое излучение равномерно распределено по небесной сфере и по интенсивности соответствует тепловому излучению абсолютно черного тела при температуре около 3К.
Роберт Уилсон и Арно Пензиас
Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее.
Модель горячей Вселенной получила эмпирическое подтверждение в 1965 году в открытии реликтового излучения американскими учеными Пензиасом и Уилсоном.
Реликтовое излучение - одна из составляющих общего фона космического электромагнитного излучения. Реликтовое излучение равномерно распределено по небесной сфере и по интенсивности соответствует тепловому излучению абсолютно черного тела при температуре около 3К.
Роберт Уилсон и Арно Пензиас
Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее.
Слайд #18
Горячая Вселенная
Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала.
При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось - кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду.
Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала.
При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось - кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду.
Слайд #19
Горячая Вселенная
Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К.
Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом.
Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К.
Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом.
Слайд #20
Теория большого взрыва
Космологическая теория начала расширения Вселенной
Математика, наука, история, мистика,
Все это началось с Большого Взрыва!
Barenaked Ladies
Космологическая теория начала расширения Вселенной
Математика, наука, история, мистика,
Все это началось с Большого Взрыва!
Barenaked Ladies
Слайд #21
Теория Большого взрыва
Что было до большого взрыва?
Состояние бесконечной плотности и температуры, бесконечной кривизны пространства в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью.
Считается, что эпоху ДО взрыва нельзя рассматривать известными методами.
Точка сингулярности –
13,7 ± 0,13 млрд лет назад
С сингулярности начинается взрывное, замедляющееся со временем расширение.
Что было до большого взрыва?
Состояние бесконечной плотности и температуры, бесконечной кривизны пространства в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью.
Считается, что эпоху ДО взрыва нельзя рассматривать известными методами.
Точка сингулярности –
13,7 ± 0,13 млрд лет назад
С сингулярности начинается взрывное, замедляющееся со временем расширение.
Слайд #22
Теория большого взрыва
Наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи:
10-43секунд после Большого взрыва с температурой примерно 1032К и плотностью около 1093 г/см³
В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий, Вселенная расширялась с ускорением, а энергия в единице объема оставалась постоянной.
Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму.
Наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи:
10-43секунд после Большого взрыва с температурой примерно 1032К и плотностью около 1093 г/см³
В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий, Вселенная расширялась с ускорением, а энергия в единице объема оставалась постоянной.
Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму.
Слайд #23
Теория большого взрыва
В начале расширения Вселенной ее температура была столь высока (1013 К), что энергии фотонов хватало для рождения пар всех известных частиц и античастиц.
При понижении температуры до 5*1012 К почти все протоны и нейтроны превратились в кванты излучения; остались только те из них, для которых "не хватило" античастиц. Фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы.
Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную) от их общего числа. Именно из этих "избыточных" протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.
В начале расширения Вселенной ее температура была столь высока (1013 К), что энергии фотонов хватало для рождения пар всех известных частиц и античастиц.
При понижении температуры до 5*1012 К почти все протоны и нейтроны превратились в кванты излучения; остались только те из них, для которых "не хватило" античастиц. Фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы.
Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную) от их общего числа. Именно из этих "избыточных" протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.
Слайд #24
Теория большого взрыва
Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия - эпоха первичного нуклеосинтеза.
Продолжалась эта эпоха приблизительно 3 минуты. Ее результатом в основном стало образование ядер гелия. Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества.
Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия - эпоха первичного нуклеосинтеза.
Продолжалась эта эпоха приблизительно 3 минуты. Ее результатом в основном стало образование ядер гелия. Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества.
Слайд #25
Теория большого взрыва
После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой.
Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода.
После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой.
Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода.
Слайд #26
Теория Большого взрыва
После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.
После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.
Слайд #27
ФОРМИРОВАНИЕ КОСМИЧЕСКИХ ТЕЛ
Слайд #28
Гравитационная конденсация
От рекомбинации до появления первых галактик и звезд прошли сотни миллионов лет. Нарастание возмущений (малых отклонений от среднего значения) плотности и скорости вещества в первоначально однородной среде под действием гравитационных сил называется гравитационной неустойчивостью. Она рассматривается обычно как причина образования галактик и их скоплений.
От рекомбинации до появления первых галактик и звезд прошли сотни миллионов лет. Нарастание возмущений (малых отклонений от среднего значения) плотности и скорости вещества в первоначально однородной среде под действием гравитационных сил называется гравитационной неустойчивостью. Она рассматривается обычно как причина образования галактик и их скоплений.
Слайд #29
Гравитационная конденсация
Все межзвездное пространство заполнено веществом. По современным представлениям, основным компонентом межзвездной среды является газ, состоящий из атомов и молекул. Он перемешан с пылью, на долю которой приходится около 1% массы межзвездного вещества. Это вещество пронизывается быстрыми потоками элементарных частиц - космическими лучами, - и электромагнитным излучением.
Все межзвездное пространство заполнено веществом. По современным представлениям, основным компонентом межзвездной среды является газ, состоящий из атомов и молекул. Он перемешан с пылью, на долю которой приходится около 1% массы межзвездного вещества. Это вещество пронизывается быстрыми потоками элементарных частиц - космическими лучами, - и электромагнитным излучением.
Слайд #30
Гравитационная конденсация
Около половины межзвездного газа содержится в молекулярных облаках. Их плотность в сотни раз больше, чем у облаков атомарного водорода, а температура всего на несколько градусов выше абсолютного нуля. Именно при таких условиях возникают неустойчивые к гравитационному сжатию отдельные уплотнения в молекулярном облаке массой порядка массы Солнца и становится возможным формирование звезд.
Около половины межзвездного газа содержится в молекулярных облаках. Их плотность в сотни раз больше, чем у облаков атомарного водорода, а температура всего на несколько градусов выше абсолютного нуля. Именно при таких условиях возникают неустойчивые к гравитационному сжатию отдельные уплотнения в молекулярном облаке массой порядка массы Солнца и становится возможным формирование звезд.
Слайд #31
Рождение звезды
Плотный фрагмент молекулярного облака, в котором еще не достигнуты температуры, необходимые для начала термоядерных реакций, т.е. превращения облака в звезду, называется в звездной космогонии протозвездой.
Протозвезда - это космический объект, который уже не облако, но еще и не звезда. Когда температура в центре протозвезды достигает нескольких миллионов градусов, начинаются термоядерные реакции, сжатие прекращается, и протозвезда становится звездой.
Плотный фрагмент молекулярного облака, в котором еще не достигнуты температуры, необходимые для начала термоядерных реакций, т.е. превращения облака в звезду, называется в звездной космогонии протозвездой.
Протозвезда - это космический объект, который уже не облако, но еще и не звезда. Когда температура в центре протозвезды достигает нескольких миллионов градусов, начинаются термоядерные реакции, сжатие прекращается, и протозвезда становится звездой.
Слайд #32
Рождение звезды
В среднем в Галактике ежегодно рождается примерно десяток звезд.
Диапазон масс только что произведенных звезд простирается от сотых долей до сотни масс Солнца, причем маленькие звезды образуются значительно чаще, чем крупные. Примерно половина звезд образуются одиночными; остальные образуют двойные, тройные и более сложные системы
В среднем в Галактике ежегодно рождается примерно десяток звезд.
Диапазон масс только что произведенных звезд простирается от сотых долей до сотни масс Солнца, причем маленькие звезды образуются значительно чаще, чем крупные. Примерно половина звезд образуются одиночными; остальные образуют двойные, тройные и более сложные системы
Слайд #33
ЗВЕЗДНАЯ ЭВОЛЮЦИЯ
Слайд #34
ЗВЕЗДНАЯ ЭВОЛЮЦИЯ
Физические закономерности, связывающие наблюдаемые характеристики звезд, отражаются на диаграмме цвет-светимость - диаграмме Герцшпрунга - Ресселла, на которой звезды образуют отдельные группировки - последовательности: главную последовательность звезд, последовательности сверхгигантов, ярких и слабых гигантов, субгигантов, субкарликов и белых карликов.
Физические закономерности, связывающие наблюдаемые характеристики звезд, отражаются на диаграмме цвет-светимость - диаграмме Герцшпрунга - Ресселла, на которой звезды образуют отдельные группировки - последовательности: главную последовательность звезд, последовательности сверхгигантов, ярких и слабых гигантов, субгигантов, субкарликов и белых карликов.
Слайд #35
Звездная эволюция
Большую часть своей жизни любая звезда находится на так называемой главной последовательности диаграммы цвет-светимость. Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше. Главная последовательность включает в себя около 90% всех наблюдаемых звезд.
Большую часть своей жизни любая звезда находится на так называемой главной последовательности диаграммы цвет-светимость. Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше. Главная последовательность включает в себя около 90% всех наблюдаемых звезд.
Слайд #36
Звездная эволюция
Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой. Звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд - всего миллионы лет.
Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды прекращается. Она переходит в устойчивое состояние белого карлика.
Если масса превышает критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов и имеет такую громадную плотность, что огромная звездная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается - образуется нейтронная звезда.
Если же масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса, то конечным этапом эволюции звезды будет черная дыра.
Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой. Звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд - всего миллионы лет.
Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды прекращается. Она переходит в устойчивое состояние белого карлика.
Если масса превышает критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов и имеет такую громадную плотность, что огромная звездная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается - образуется нейтронная звезда.
Если же масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса, то конечным этапом эволюции звезды будет черная дыра.
Слайд #37
Галактики
Слайд #38
Млечный Путь
Млечный Путь - грандиозное скопление звезд, видимое на небе как светлая туманная полоса.
На древнегреческом языке слово "глактикос" означает "молочный", "млечный", поэтому Млечный Путь и похожие на него звездные системы называют галактиками.
Млечный Путь - грандиозное скопление звезд, видимое на небе как светлая туманная полоса.
На древнегреческом языке слово "глактикос" означает "молочный", "млечный", поэтому Млечный Путь и похожие на него звездные системы называют галактиками.
Слайд #39
Млечный Путь
В нашей Галактике - Млечном Пути - более 200 млрд. звезд самой разной светимости и цвета. Окрестности Солнца - это объем Галактики, в котором доступными современной астрономии средствами можно наблюдать и изучать звезды разных типов. Как показывает практика, это "шар", который содержит около 1,5 тысяч звезд. Радиус этого шара - 20 парсек.
В настоящее время в окрестностях Солнца исследованы все звезды.
В нашей Галактике - Млечном Пути - более 200 млрд. звезд самой разной светимости и цвета. Окрестности Солнца - это объем Галактики, в котором доступными современной астрономии средствами можно наблюдать и изучать звезды разных типов. Как показывает практика, это "шар", который содержит около 1,5 тысяч звезд. Радиус этого шара - 20 парсек.
В настоящее время в окрестностях Солнца исследованы все звезды.
Слайд #40
Созвездия
Наши предки объединили все звезды в группы - созвездия. Созвездия не являются физическими группировками звезд, связанных между собой общими свойствами. Созвездия - это участки звездного неба. Звезды в созвездиях объединены нашими предками для того, чтобы было легче ориентироваться в звездном небе, т.е. на основании случайного совпадения их положений на небе. Все небо разделено на 88 созвездий, которые носят имена мифических героев, животных, предметов.
Наши предки объединили все звезды в группы - созвездия. Созвездия не являются физическими группировками звезд, связанных между собой общими свойствами. Созвездия - это участки звездного неба. Звезды в созвездиях объединены нашими предками для того, чтобы было легче ориентироваться в звездном небе, т.е. на основании случайного совпадения их положений на небе. Все небо разделено на 88 созвездий, которые носят имена мифических героев, животных, предметов.
Слайд #41
Скопления
Скопления звезд - это их группы с общими физическими свойствами. Этим скопления отличаются от созвездий, которые являются результатом случайного совпадения положений звезд на небе. Наблюдения в XIX веке позволили установить, что звездные скопления разделяются на шаровые скопления и рассеянные скопления. Во второй половине XX века к этим классам звездных группировок добавился еще один - ассоциации звезд.
Скопления звезд - это их группы с общими физическими свойствами. Этим скопления отличаются от созвездий, которые являются результатом случайного совпадения положений звезд на небе. Наблюдения в XIX веке позволили установить, что звездные скопления разделяются на шаровые скопления и рассеянные скопления. Во второй половине XX века к этим классам звездных группировок добавился еще один - ассоциации звезд.
Слайд #42
Галактика
В итоге в структуре Галактики выделяют плоский линзообразный диск, погруженный в более разреженный звездное облако сферической формы - гало. В итоге Галактика имеет форму двояковыпуклой линзы, похожа на чечевичное зерно.
Одним из наиболее заметных образований в дисках галактик, подобных нашей, являются спиральные ветви (или рукава).
Галактика - гигантская гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс
В итоге в структуре Галактики выделяют плоский линзообразный диск, погруженный в более разреженный звездное облако сферической формы - гало. В итоге Галактика имеет форму двояковыпуклой линзы, похожа на чечевичное зерно.
Одним из наиболее заметных образований в дисках галактик, подобных нашей, являются спиральные ветви (или рукава).
Галактика - гигантская гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс
Слайд #43
Метагалактика
Метагалактика - часть Вселенной, доступная современным астрономическим методам исследований, - содержит несколько миллиардов галактик - звездных систем, в которых звезды связаны друг с другом силами гравитации.
Метагалактика - часть Вселенной, доступная современным астрономическим методам исследований, - содержит несколько миллиардов галактик - звездных систем, в которых звезды связаны друг с другом силами гравитации.
Слайд #44
Метагалактика
Внешний вид и структура звездных систем весьма различны, и в соответствии с этим галактики делятся на морфологические типы: эллиптические, спиральные, неправильные.
Наша Галактика принадлежит к типу спиральных.
В окрестностях нашей Галактики, в пределах полутора мегапарсек от нее, расположены еще около 40 галактик, которые образуют местную группу.
Внешний вид и структура звездных систем весьма различны, и в соответствии с этим галактики делятся на морфологические типы: эллиптические, спиральные, неправильные.
Наша Галактика принадлежит к типу спиральных.
В окрестностях нашей Галактики, в пределах полутора мегапарсек от нее, расположены еще около 40 галактик, которые образуют местную группу.
Слайд #45
Метагалактики
Скопления галактик - это самые крупные устойчивые системы во Вселенной. Существуют и более протяженные образования: цепочки из скоплений или гигантские плоские поля, усеянные галактиками и скоплениями, но гравитация не удерживает эти системы, и они вместе со всей Вселенной расширяются.
Скопления галактик - это самые крупные устойчивые системы во Вселенной. Существуют и более протяженные образования: цепочки из скоплений или гигантские плоские поля, усеянные галактиками и скоплениями, но гравитация не удерживает эти системы, и они вместе со всей Вселенной расширяются.
Слайд #46
Будущее Вселенной
Слайд #47
Будущее: расширение или сжатие?
Некоторые ученые полагают, что в далеком будущем возможен обратный процесс – «Большое Сжатие», и Вселенная вернется к своему изначальному состоянию сингулярности;
Другие считают, что расширение будет продолжаться всегда и, в итоге, Вселенная рассеется в звездную пыль, и, возможно, материя исчезнет…
Некоторые ученые полагают, что в далеком будущем возможен обратный процесс – «Большое Сжатие», и Вселенная вернется к своему изначальному состоянию сингулярности;
Другие считают, что расширение будет продолжаться всегда и, в итоге, Вселенная рассеется в звездную пыль, и, возможно, материя исчезнет…
Слайд #48
Источники
Статья «Эволюция Вселенной» А.Н. Васильев; Соросовский образовательный журнал, 1996г
Фильм «Рождение Вселенной», National geographic, перевод телеканала «Культура»
Статья «Расширяющаяся Вселенная», образовательный проект nrc.edu.ru
Материалы Wikipedia
Материалы hubblesite.org
Статья «Эволюция Вселенной» А.Н. Васильев; Соросовский образовательный журнал, 1996г
Фильм «Рождение Вселенной», National geographic, перевод телеканала «Культура»
Статья «Расширяющаяся Вселенная», образовательный проект nrc.edu.ru
Материалы Wikipedia
Материалы hubblesite.org
Слайд #49
Спасибо за внимание.